IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/846973.html
   My bibliography  Save this article

Conditional Nonlinear Optimal Perturbation of a Coupled Lorenz Model

Author

Listed:
  • Lili Yang

Abstract

The conditional nonlinear optimal perturbation (CNOP) technique is a useful tool for studying the limits of predictability in numerical weather forecasting and climate predictions. The CNOP is the optimal combined mode of the initial and model parameter perturbations that induce the largest departure from a given reference state. The CNOP has two special cases: the CNOP-I is linked to initial perturbations and has the largest nonlinear evolution at the time of prediction, while the other case, CNOP-P, is related to the parameter perturbations that cause the largest departure from a given reference state at a given future time. Solving the CNOPs of a numerical model is a mathematical problem. In this paper, we calculate the CNOP, CNOP-I, and CNOP-P of a coupled Lorenz model and study the properties of these CNOPs. We find that the CNOP, CNOP-I, and CNOP-P always locate the boundary of their respective constraints. This property is also demonstrated analytically for the model whose solutions depend continuously on the initial and parameter perturbations, which provides a theoretical basis for testing the accountability of the numerically computed CNOPs. In addition, we analyze the features of the CNOPs for the coupled Lorenz model and explain their structures.

Suggested Citation

  • Lili Yang, 2013. "Conditional Nonlinear Optimal Perturbation of a Coupled Lorenz Model," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, March.
  • Handle: RePEc:hin:jnlmpe:846973
    DOI: 10.1155/2013/846973
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/846973.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/846973.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/846973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:846973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.