IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8426492.html
   My bibliography  Save this article

Equivalent Modeling of DFIG-Based Wind Power Plant Considering Crowbar Protection

Author

Listed:
  • Qianlong Zhu
  • Ming Ding
  • Pingping Han

Abstract

Crowbar conduction has an impact on the transient characteristics of a doubly fed induction generator (DFIG) in the short-circuit fault condition. But crowbar protection is seldom considered in the aggregation method for equivalent modeling of DFIG-based wind power plants (WPPs). In this paper, the relationship between the growth of postfault rotor current and the amplitude of the terminal voltage dip is studied by analyzing the rotor current characteristics of a DFIG during the fault process. Then, a terminal voltage dip criterion which can identify crowbar conduction is proposed. Considering the different grid connection structures for single DFIG and WPP, the criterion is revised and the crowbar conduction is judged depending on the revised criterion. Furthermore, an aggregation model of the WPP is established based on the division principle of crowbar conduction. Finally, the proposed equivalent WPP is simulated on a DIgSILENT PowerFactory platform and the results are compared with those of the traditional equivalent WPPs and the detailed WPP. The simulation results show the effectiveness of the method for equivalent modeling of DFIG-based WPP when crowbar protection is also taken into account.

Suggested Citation

  • Qianlong Zhu & Ming Ding & Pingping Han, 2016. "Equivalent Modeling of DFIG-Based Wind Power Plant Considering Crowbar Protection," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-16, August.
  • Handle: RePEc:hin:jnlmpe:8426492
    DOI: 10.1155/2016/8426492
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8426492.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8426492.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/8426492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianlong Zhu & Wenjing Xiong & Haijiao Wang & Xiaoqiang Jin, 2023. "Refined Equivalent Modeling Method for Mixed Wind Farms Based on Small Sample Data," Energies, MDPI, vol. 16(20), pages 1-17, October.
    2. Qianlong Zhu & Jun Tao & Tianbai Deng & Mingxing Zhu, 2022. "A General Equivalent Modeling Method for DFIG Wind Farms Based on Data-Driven Modeling," Energies, MDPI, vol. 15(19), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8426492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.