Author
Listed:
- Jinhua Li
- Chunxiang Li
- Shuisheng Chen
Abstract
The spline-interpolation-based fast Fourier transform (FFT) algorithm, designated as the SFFT algorithm, is proposed in the present paper to further enhance the computational speed of simulating the multivariate stochastic processes. The proposed SFFT algorithm first introduces the spline interpolation technique to reduce the number of the Cholesky decomposition of a spectral density matrix and subsequently uses the FFT algorithm to further enhance the computational speed. In order to highlight the superiority of the SFFT algorithm, the simulations of the multivariate stationary longitudinal wind velocity fluctuations have been carried out, respectively, with resorting to the SFFT-based and FFT-based spectral representation SR methods, taking into consideration that the elements of cross-power spectral density matrix are the complex values. The numerical simulation results show that though introducing the spline interpolation approximation in decomposing the cross-power spectral density matrix, the SFFT algorithm can achieve the results without a loss of precision with reference to the FFT algorithm. In comparison with the FFT algorithm, the SFFT algorithm provides much higher computational efficiency. Likewise, the superiority of the SFFT algorithm is becoming more remarkable with the dividing number of frequency, the number of samples, and the time length of samples going up.
Suggested Citation
Jinhua Li & Chunxiang Li & Shuisheng Chen, 2011.
"Spline-Interpolation-Based FFT Approach to Fast Simulation of Multivariate Stochastic Processes,"
Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-24, November.
Handle:
RePEc:hin:jnlmpe:842183
DOI: 10.1155/2011/842183
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:842183. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.