Author
Listed:
- Ming-Chih Chen
- Yang-Ming Liu
Abstract
This work presents a novel indoor video surveillance system, capable of detecting the falls of humans. The proposed system can detect and evaluate human posture as well. To evaluate human movements, the background model is developed using the codebook method, and the possible position of moving objects is extracted using the background and shadow eliminations method. Extracting a foreground image produces more noise and damage in this image. Additionally, the noise is eliminated using morphological and size filters and this damaged image is repaired. When the image object of a human is extracted, whether or not the posture has changed is evaluated using the aspect ratio and height of a human body. Meanwhile, the proposed system detects a change of the posture and extracts the histogram of the object projection to represent the appearance. The histogram becomes the input vector of K-Nearest Neighbor (K-NN) algorithm and is to evaluate the posture of the object. Capable of accurately detecting different postures of a human, the proposed system increases the fall detection accuracy. Importantly, the proposed method detects the posture using the frame ratio and the displacement of height in an image. Experimental results demonstrate that the proposed system can further improve the system performance and the fall down identification accuracy.
Suggested Citation
Ming-Chih Chen & Yang-Ming Liu, 2013.
"An Indoor Video Surveillance System with Intelligent Fall Detection Capability,"
Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, November.
Handle:
RePEc:hin:jnlmpe:839124
DOI: 10.1155/2013/839124
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:839124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.