IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8372093.html
   My bibliography  Save this article

An Analytical Approach to Wet Cooling Towers Based on Functional Analysis

Author

Listed:
  • Guo Qianjian
  • Xiaoni Qi
  • Zheng Wei
  • Peng Sun

Abstract

An analytical solution for computing the temperature distribution of air and water over the height through the cooling tower is so complex that finding the exact solution takes too much time. The purpose of this paper is to present efficient and accurate analytical expressions for the heat and mass transfer model in cooling towers. Based on the method of functional analysis, we derived an analytical solution for temperature distribution of water and air by using the method of solving linear differential equations. The error estimation, the existence, and uniqueness of the solution are given by using contraction mapping theorem. The basic equation of the model on the basis of the additional assumptions on the cooling tower is solved, and the outlet parameters are also obtained.

Suggested Citation

  • Guo Qianjian & Xiaoni Qi & Zheng Wei & Peng Sun, 2019. "An Analytical Approach to Wet Cooling Towers Based on Functional Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, December.
  • Handle: RePEc:hin:jnlmpe:8372093
    DOI: 10.1155/2019/8372093
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8372093.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8372093.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8372093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    2. Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8372093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.