IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/832851.html
   My bibliography  Save this article

A GM (1, 1) Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

Author

Listed:
  • Ning-bo Zhao
  • Jia-long Yang
  • Shu-ying Li
  • Yue-wu Sun

Abstract

Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1) Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1) model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this approach, firstly, the GM (1, 1) model is used to forecast the trend by using limited data samples. Then, Markov chain model is integrated into GM (1, 1) model in order to enhance the forecast performance, which can solve the influence of random fluctuation data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM (1, 1) Markov chain model. The results show that the GM (1, 1) Markov chain model is able to forecast exhaust gas temperature accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

Suggested Citation

  • Ning-bo Zhao & Jia-long Yang & Shu-ying Li & Yue-wu Sun, 2014. "A GM (1, 1) Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, April.
  • Handle: RePEc:hin:jnlmpe:832851
    DOI: 10.1155/2014/832851
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/832851.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/832851.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/832851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjun Huang & Lv Zhou & Fenliang Liu & Yuanzhi Cao & Zhong Liu & Yun Xue, 2023. "Deformation Prediction of Dam Based on Optimized Grey Verhulst Model," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    2. Teresa Castiglione & Diego Perrone & Luciano Strafella & Antonio Ficarella & Sergio Bova, 2023. "Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications," Energies, MDPI, vol. 16(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:832851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.