Author
Listed:
- Asim Farooq
- Mowen Xie
- Svetla Stoilova
- Firoz Ahmad
Abstract
Beijing has an enormous transportation challenge: to relieve the extreme congestion that has arisen, largely due to overpopulation. To meet this challenge, the city administration has decided to extend its territory; a new city will be planned and built. This new city, Xiongan, will reduce the burden on the capital. A new high-speed railway (HSR) line is designed to transport millions of people every day within less than an hour. This study applies the potential of Geographical Information Systems (GIS) and multicriteria methods, Analytic Hierarchy Process (AHP) and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II), to determine the best alternative of transportation for the new high-speed railway line between Beijing and Xiongan, comparing different ones. The methodology consists of two stages. In the first stage remote sensing datasets such as ASTER DEM and LANDSAT images and GIS software such as ERDAS IMAGINE and ArcGIS have been used to determine settlement distribution, station location, elevation model, slope percentage, vegetation percentage, and route alignment for a new high-speed railway line for better understanding of its spatial distribution pattern over the study area. The second phase of the study focusing on assessing the various alternatives of transportation has been determined, and three approaches to choosing the best alternative have been introduced. In the paper we examine criteria associated with travel and economic criteria: travel time, the number of train stops, public satisfaction with transport, the number of seats per day, connectivity, operating costs, profit, and the payback period. Six alternatives of transportation have been studied. The stops in Guan and stations in the metro’s rings have been investigated. In the second stage, the Analytic Hierarchy Process (AHP) and PROMETHEE II methods have been used to select the best alternative. The first approach uses only criteria related to the trip, as the criterion to choose the best alternative is the maximum of the net outranking flows by PROMETHEE II method; the second approach applies two independent criteria: the ratio of normalized operating costs and the normalized net outranking flows, and the ratio of the normalized payback period and the normalized net outranking flows; the third approach includes all defined criteria, and the criterion of choosing the best alternative is the maximum of net outranking flows as calculated by the PROMETHEE II method. The approaches have been analyzed with the purpose of comparing the results. The result indicates that it is expedient to have a station in Guan, which will increase the connection and connectivity among the cities while providing fast mobility options for a large number of inhabitants of Guan city. Furthermore, the result from Remote Sensing and GIS analysis demonstrates that the proposed high-speed railway line will be environmentally sustainable and is economically/socially feasible and that it will certainly attract current and future passengers because of their needs.
Suggested Citation
Asim Farooq & Mowen Xie & Svetla Stoilova & Firoz Ahmad, 2019.
"Multicriteria Evaluation of Transport Plan for High-Speed Rail: An Application to Beijing-Xiongan,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-23, May.
Handle:
RePEc:hin:jnlmpe:8319432
DOI: 10.1155/2019/8319432
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Sara Poveda-Reyes & Ashwani Kumar Malviya & Elena García-Jiménez & Gemma Dolores Molero & Maria Chiara Leva & Francisco Enrique Santarremigia, 2021.
"Application of Mathematical and Computational Methods to Identify Women’s Priorities in Transport,"
Sustainability, MDPI, vol. 13(5), pages 1-43, March.
- Velasco, Alexandra & Gerike, Regine, 2024.
"A composite index for the evaluation of sustainability in Latin American public transport systems,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8319432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.