IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8315894.html
   My bibliography  Save this article

Application of an Improved Cloud Model and Distance Discrimination to Evaluate Slope Stability

Author

Listed:
  • Jiang Guo
  • Jiachuang Wang
  • Shihao Liu

Abstract

With the rapid development of China’s economy, the construction of infrastructure has continuously improved. In the past few years, the construction of water conservancy projects has been constantly developing, and related geological disasters have become increasingly prominent. The stability of water conservancy slopes is related to whether water conservancy projects can be safely constructed and built to function safely and effectively, which has become a topic of increasing concern for geologists and related researchers. This paper selects the Jinping 1 Hydropower Station in Sichuan, China, for analysis. Four categories of evaluation factors (geological, engineering, environmental, and monitoring) and 24 subfactors (17 quantitative indicators and 7 qualitative indicators) are selected to ascertain the risk of the slope more accurately. By investigating the deficiencies of the traditional cloud model, the related concepts and computational models of a finite-area cloud model are proposed. By obtaining the characteristic parameters, the degrees of membership of the measurement samples belonging to different risk levels are further obtained. The weights of the indicators determined by the cloud processor and the weighted distance discriminant method are used to determine the final weights and achieve a final classification of the slope stability level. The research results demonstrate that the weighted distance discriminant algorithm combined with the improved finite-interval cloud model can consider the comprehensive information of each evaluation index and the degrees of mutual influence between the indicators, making the evaluation results more objective. Moreover, the proposed approach can quickly and accurately classify slope stability and deliver a prediction of the safety, thereby providing new ideas for evaluating the stability of slopes.

Suggested Citation

  • Jiang Guo & Jiachuang Wang & Shihao Liu, 2019. "Application of an Improved Cloud Model and Distance Discrimination to Evaluate Slope Stability," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, August.
  • Handle: RePEc:hin:jnlmpe:8315894
    DOI: 10.1155/2019/8315894
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8315894.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8315894.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8315894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangxing Jin & Pingting Liu & Wenbing Yao & Junjie Wei, 2024. "A Comprehensive Evaluation of Resilience in Abandoned Open-Pit Mine Slopes Based on a Two-Dimensional Cloud Model with Combination Weighting," Mathematics, MDPI, vol. 12(8), pages 1-26, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8315894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.