Author
Listed:
- Xiaoma Dong
- Lifei Chen
- Hengchang Jing
Abstract
In order to overcome the deficiencies of the existing intelligent displacement back analysis methods, the authors propose a parameter identification method for the 3D elastic-plastic model of tunnel engineering based on an improved genetic algorithm. An improved SVR algorithm is introduced, which solves this problem by transforming the multidimensional output variable regression into a multilayer standard one-dimensional output variable regression; combined with the decimal-coded genetic algorithm, an improved GA-SVR algorithm is formed, and genetic algorithm is used to search for optimal SVR model parameters, in order to establish the optimal nonlinear mapping relationship between the parameters to be identified and the displacement. The genetic algorithm is used to carry out the optimal identification of the parameters to be identified. In order to compare the effect of this improved GA-SVR algorithm, the genetic algorithm is combined with the BP neural network to form the GA-BP algorithm and compile the corresponding calculation program. The two algorithms are applied to the intelligent identification of the parameters of the 3D elastic-plastic model of the same tunnel engineering. The experimental results show that the maximum relative error of the 6 parameters to be identified is 18.51%, only 2 are over 15% and 14 are within 10%, and the average relative error of the 6 parameters is only 10.32%, the minimum is 2.63%; for the GA-BP algorithm, the maximum relative error of identification is 22.73%, 4 are more than 15% and 9 are within 10%, and the average relative error of 6 parameters’ identification is up to 13.91%, and the minimum is 4.64%. The improved GA-SVR algorithm can achieve higher identification accuracy and better calculation efficiency than the GA-BP algorithm and can be used in the identification of similar geotechnical engineering parameters.
Suggested Citation
Xiaoma Dong & Lifei Chen & Hengchang Jing, 2022.
"Parameter Identification of 3D Elastic-Plastic Model for Tunnel Engineering Based on Improved Genetic Algorithm,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, August.
Handle:
RePEc:hin:jnlmpe:8305175
DOI: 10.1155/2022/8305175
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8305175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.