IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8299761.html
   My bibliography  Save this article

Personalized Hybrid Recommendation for Tourist Users Based on Matrix Cluster Apriori Mining Algorithm

Author

Listed:
  • Qian Zhang
  • Gengxin Sun

Abstract

With the rapid development of Internet technology and the arrival of the era of big data, the rapid expansion of network information resources has formed massive information. Massive information resources have brought great convenience to people’s lives. However, it becomes more and more difficult to find the content that interests you, which is the phenomenon of “information overload.†In order to solve this problem, a solution based on personalized recommendation technology is proposed. In personalized recommendation technology, collaborative filtering algorithm is the most widely used technology. Clustering technology can effectively divide objects into groups, so that the similarity of attributes between objects in the same group is high, and the similarity of objects in different groups is low. The core step of the filtering recommendation algorithm is to find the similar neighbors of the target user by calculating the similarity. Applying the clustering technology to the recommendation can effectively improve the performance of the recommendation system. Aiming at the real-time problem of collaborative filtering recommendation, this paper introduces a method of firstly clustering users on the user item rating matrix, and finding the nearest neighbors in the clusters with high similarity with the target user, which effectively reduces the query space and improves the recommendation. This paper proposes a method to measure the user’s preference for item attributes, which is used in the above clustering process to improve the recommendation accuracy while retaining the advantage of reducing the query space. Aiming at the problem of poor recommendation accuracy, this paper proposes a fuzzy-improved K-means algorithm to cluster items in the product attribute matrix, and then fuses the similarity of the belongingness of items to clusters in the fuzzy clustering. The similarity calculated on the score matrix shows that this method is better than the traditional hybrid recommendation in accuracy.

Suggested Citation

  • Qian Zhang & Gengxin Sun, 2022. "Personalized Hybrid Recommendation for Tourist Users Based on Matrix Cluster Apriori Mining Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:8299761
    DOI: 10.1155/2022/8299761
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/8299761.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/8299761.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/8299761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8299761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.