IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/828269.html
   My bibliography  Save this article

A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle

Author

Listed:
  • Hongqiang Guo
  • Hongwen He
  • Xuelian Xiao

Abstract

A predictive distribution model for a series cooperative braking system of an electric vehicle is proposed, which can solve the real-time problem of the optimum braking force distribution. To get the predictive distribution model, firstly three disciplines of the maximum regenerative energy recovery capability, the maximum generating efficiency and the optimum braking stability are considered, then an off-line process optimization stream is designed, particularly the optimal Latin hypercube design (Opt LHD) method and radial basis function neural network (RBFNN) are utilized. In order to decouple the variables between different disciplines, a concurrent subspace design (CSD) algorithm is suggested. The established predictive distribution model is verified in a dynamic simulation. The off-line optimization results show that the proposed process optimization stream can improve the regenerative energy recovery efficiency, and optimize the braking stability simultaneously. Further simulation tests demonstrate that the predictive distribution model can achieve high prediction accuracy and is very beneficial for the cooperative braking system.

Suggested Citation

  • Hongqiang Guo & Hongwen He & Xuelian Xiao, 2014. "A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, February.
  • Handle: RePEc:hin:jnlmpe:828269
    DOI: 10.1155/2014/828269
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/828269.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/828269.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/828269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:828269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.