Author
Listed:
- Zhiwei Cai
- Tongqing Wu
- Jian Lu
- Yue Wu
- Nianchun Xu
Abstract
The fracture of sandstone is closely related to the condition of internal microcracks and the fabric of micrograin. The macroscopic mechanical property depends on its microscopic structures. However, it is difficult to obtain the law of the microcrack growth under loading by experiments. A series of microscopic sandstone models were established with particle flow code 3D (PFC3D) and based on the triaxial experiment results on sandstones. The experimental and numerical simulations of natural and saturated sandstones under different confining pressures were implemented. We analyzed the evolution of rock deformation and the rock fracture development from a microscopic view. Results show that although the sandstones are under different confining pressures, the law of microcrack growth is the same. That is, the number of the microcracks increases slowly in the initial stage and then increases exponentially. The number of shear cracks is more than the tensile cracks, and the proportion of the shear cracks increases with the increase of confining pressure. The cracking strength of natural and saturated sandstones is 26% and 27% of the peak strength, respectively. Under low confining pressure, the total number of cracks in the saturated sample is 20% more than that of the natural sample and the strongly scattered chain is barely seen. With the increase of the confining pressure, the effect of water on the total number of cracks is reduced and the distribution of the strong chain is even more uniform. In other words, it is the confining pressure that mainly affects the distribution of the force chain, irrespective of the state of the rock, natural or saturated. The research results reveal that the control mechanism of shear crack friction under the different stress states of a rock slope in the reservoir area provides a basis for evaluating the stability of rock mass and predicting the occurrence of geological disasters.
Suggested Citation
Zhiwei Cai & Tongqing Wu & Jian Lu & Yue Wu & Nianchun Xu, 2021.
"Research on Microscopic Evolution Laws of Sandstone Deformation and Failure Based on the Particle Discrete Element Method,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, August.
Handle:
RePEc:hin:jnlmpe:8282493
DOI: 10.1155/2021/8282493
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8282493. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.