IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8250480.html
   My bibliography  Save this article

A New Chaotic Starling Particle Swarm Optimization Algorithm for Clustering Problems

Author

Listed:
  • Lin Wang
  • Xiyu Liu
  • Minghe Sun
  • Jianhua Qu
  • Yanmeng Wei

Abstract

A new method using collective responses of starling birds is developed to enhance the global search performance of standard particle swarm optimization (PSO). The method is named chaotic starling particle swarm optimization (CSPSO). In CSPSO, the inertia weight is adjusted using a nonlinear decreasing approach and the acceleration coefficients are adjusted using a chaotic logistic mapping strategy to avoid prematurity of the search process. A dynamic disturbance term (DDT) is used in velocity updating to enhance convergence of the algorithm. A local search method inspired by the behavior of starling birds utilizing the information of the nearest neighbors is used to determine a new collective position and a new collective velocity for selected particles. Two particle selection methods, Euclidean distance and fitness function, are adopted to ensure the overall convergence of the search process. Experimental results on benchmark function optimization and classic clustering problems verified the effectiveness of this proposed CSPSO algorithm.

Suggested Citation

  • Lin Wang & Xiyu Liu & Minghe Sun & Jianhua Qu & Yanmeng Wei, 2018. "A New Chaotic Starling Particle Swarm Optimization Algorithm for Clustering Problems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-14, August.
  • Handle: RePEc:hin:jnlmpe:8250480
    DOI: 10.1155/2018/8250480
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8250480.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8250480.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8250480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    2. Lin Wang & Xiyu Liu & Jianhua Qu & Yuzhen Zhao & Zhenni Jiang & Ning Wang, 2022. "An Extended Membrane System Based on Cell-like P Systems and Improved Particle Swarm Optimization for Image Segmentation," Mathematics, MDPI, vol. 10(22), pages 1-32, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8250480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.