IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8220453.html
   My bibliography  Save this article

A Hybrid Improved Neural Networks Algorithm Based on L2 and Dropout Regularization

Author

Listed:
  • Xiaoyun Xie
  • Ming Xie
  • Ata Jahangir Moshayedi
  • Mohammad Hadi Noori Skandari
  • Zuowei Cai

Abstract

Small samples are prone to overfitting in the neural network training process. This paper proposes an optimization approach based on L2 and dropout regularization called a hybrid improved neural network algorithm to overcome this issue. The proposed model was evaluated based on the Modified National Institute of Standards and Technology (MNIST, grayscale-28 × 28 × 1) and Canadian Institute for Advanced Research 10 (CIFAR10, RGB - 32 × 32 × 3) as the training data sets and data applied to the LeNet-5 and Autoencoder neural network architectures. The evaluation is conducted based on cross-validation; the result of the model prediction is used as the final measure to evaluate the quality of the model. The results show that the proposed hybrid algorithm can perform more effectively, avoid overfitting, improve the accuracy of network model prediction in classification tasks, and reduce the reconstruction error in the unsupervised domain. In addition, employing the proposed algorithm without increasing the time complexity can reduce the effect of noisy data and bias and improve the training time of neural network models. Quantitative and qualitative experimental results show that the accuracy of using the proposed algorithm in this paper with the MNIST test set has an improvement of 2.3% and 0.9% compared to L2 regularization and dropout regularization, respectively, and based on the CIFAR10 data set, the accuracy improvement of 0.92% compared with L2 regularization and 1.31% concerning dropout regularization. The reconstruction error of using the proposed algorithm in this paper with the MNIST data set has an improvement of 0.00174 and 0.00398 compared to L2 regularization and dropout regularization, respectively, and based on the CIFAR10 data set, the accuracy improvement of 0.00078 compared with L2 regularization and 0.00174 concerning dropout regularization.

Suggested Citation

  • Xiaoyun Xie & Ming Xie & Ata Jahangir Moshayedi & Mohammad Hadi Noori Skandari & Zuowei Cai, 2022. "A Hybrid Improved Neural Networks Algorithm Based on L2 and Dropout Regularization," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-19, November.
  • Handle: RePEc:hin:jnlmpe:8220453
    DOI: 10.1155/2022/8220453
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/8220453.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/8220453.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/8220453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasibeh Esmaeili & Mohammad Jalal Abbasi-Shavazi, 2024. "Forecasting number of births and sex ratio at birth in Iran using deep neural network and ARIMA: implications for policy evaluations," Journal of Population Research, Springer, vol. 41(4), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8220453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.