Author
Abstract
Self-similar process with long-range dependence (LRD), that is, fractional Gaussian noise (fGn) with LRD is a widely used model of Internet traffic. It is indexed by its Hurst parameter that linearly relates to its fractal dimension . Note that, on the one hand, the fractal dimension of traffic measures local self-similarity. On the other hand, LRD is a global property of traffic, which is characterized by its Hurst parameter . However, by using fGn, both the self-similarity and the LRD of traffic are measured by . Therefore, there is a limitation for fGn to accurately model traffic. Recently, the generalized Cauchy (GC) process was introduced to model traffic with the flexibility to separately measure the fractal dimension and the Hurst parameter of traffic. However, there is a fundamental problem whether or not there exists the generality that the GC model is more conformable with real traffic than single parameter models, such as fGn, irrelevant of traffic traces used in experimental verification . The solution to that problem remains unknown but is desired for model evaluation in traffic theory or for model selection against specific issues, such as queuing analysis relating to the autocorrelation function (ACF) of arrival traffic. The key contribution of this paper is our solution to that fundamental problem (see Theorem 3.17) with the following features in analysis. (i) Set-valued analysis of the traffic of the fGn type. (ii) Set-valued analysis of the traffic of the GC type. (iii) Revealing the generality previously mentioned by comparing metrics of the traffic of the fGn type to that of the GC type.
Suggested Citation
Ming Li & Wei Zhao, 2012.
"Abstract Description of Internet Traffic of Generalized Cauchy Type,"
Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-18, September.
Handle:
RePEc:hin:jnlmpe:821215
DOI: 10.1155/2012/821215
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:821215. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.