Author
Listed:
- Tim Chen
- N. Kapron
- J. C.-Y. Chen
Abstract
The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a backpropagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modelling and forecasting the maximum peak and variation with time of meteorological tsunamis in the Mekong estuary in Vietnam. The parameters, including both the nearby climatic weights and the wind field factors, for finding the most extreme meteorological waves, are first examined, through the preparation of evolved neural systems. The time series of meteorological tsunamis were used for training and testing the models, and data for three cyclones were used for model prediction. Given the 22 selected meteorological tidal waves, the exact constants for the Mekong estuary, acquired through relapse investigation, are A = 9.5 × 10 −3 and B = 31 × 10 −3 . Results showed that both the Multilayer Perceptron Network (MLP) and evolved radial basis function (ERBF) methods are capable of predicting the time variation of meteorological tsunamis, and the best topologies of the MLP and ERBF are I 3 H 8 O 1 and I 3 H 10 O 1 , respectively. The proposed advanced ANN time series model is anything but difficult to use, utilizing display and prediction tools for simulating the time variation of meteorological tsunamis.
Suggested Citation
Tim Chen & N. Kapron & J. C.-Y. Chen, 2020.
"Using Evolving ANN-Based Algorithm Models for Accurate Meteorological Forecasting Applications in Vietnam,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-8, June.
Handle:
RePEc:hin:jnlmpe:8179652
DOI: 10.1155/2020/8179652
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8179652. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.