IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/815035.html
   My bibliography  Save this article

Persistent Homology of Collaboration Networks

Author

Listed:
  • C. J. Carstens
  • K. J. Horadam

Abstract

Over the past few decades, network science has introduced several statistical measures to determine the topological structure of large networks. Initially, the focus was on binary networks, where edges are either present or not. Thus, many of the earlier measures can only be applied to binary networks and not to weighted networks. More recently, it has been shown that weighted networks have a rich structure, and several generalized measures have been introduced. We use persistent homology, a recent technique from computational topology, to analyse four weighted collaboration networks. We include the first and second Betti numbers for the first time for this type of analysis. We show that persistent homology corresponds to tangible features of the networks. Furthermore, we use it to distinguish the collaboration networks from similar random networks.

Suggested Citation

  • C. J. Carstens & K. J. Horadam, 2013. "Persistent Homology of Collaboration Networks," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, June.
  • Handle: RePEc:hin:jnlmpe:815035
    DOI: 10.1155/2013/815035
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/815035.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/815035.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/815035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Woon Kian & Chang, Chiachi, 2024. "Information exploitation of human resource data with persistent homology," Journal of Business Research, Elsevier, vol. 172(C).
    2. Chuan-Shen Hu & Austin Lawson & Jung-Sheng Chen & Yu-Min Chung & Clifford Smyth & Shih-Min Yang, 2021. "TopoResNet: A Hybrid Deep Learning Architecture and Its Application to Skin Lesion Classification," Mathematics, MDPI, vol. 9(22), pages 1-22, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:815035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.