IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8103300.html
   My bibliography  Save this article

Effect of Inclined Magnetic Field on the Entropy Generation in an Annulus Filled with NEPCM Suspension

Author

Listed:
  • Seyyed Masoud Seyyedi
  • M. Hashemi-Tilehnoee
  • M. Sharifpur

Abstract

The encapsulation technique of phase change materials in the nanodimension is an innovative approach to improve the heat transfer capability and solve the issues of corrosion during the melting process. This new type of nanoparticle is suspended in base fluids call NEPCMs, nanoencapsulated phase change materials. The goal of this work is to analyze the impacts of pertinent parameters on the free convection and entropy generation in an elliptical-shaped enclosure filled with NEPCMs by considering the effect of an inclined magnetic field. To reach the goal, the governing equations (energy, momentum, and mass conservation) are solved numerically by CVFEM. Currently, to overcome the low heat transfer problem of phase change material, the NEPCM suspension is used for industrial applications. Validation of results shows that they are acceptable. The results reveal that the values of descend with ascending Ha while has a maximum at . Also, the value of increases with ascending . The values of and depend on nondimensional fusion temperature where good performance is seen in the range of . Also, increases 19.9% and ECOP increases 28.8% whereas descends 6.9% when ascends from 0 to 0.06 at . decreases 4.95% while increases by 8.65% when increases from 0.2 to 0.7 at .

Suggested Citation

  • Seyyed Masoud Seyyedi & M. Hashemi-Tilehnoee & M. Sharifpur, 2021. "Effect of Inclined Magnetic Field on the Entropy Generation in an Annulus Filled with NEPCM Suspension," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, August.
  • Handle: RePEc:hin:jnlmpe:8103300
    DOI: 10.1155/2021/8103300
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8103300.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8103300.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8103300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shengqi & Pu, Liang & Mancin, Simone & Dai, Minghao & Xu, Lingling, 2022. "Role of partial and gradient filling strategies of copper foam on latent thermal energy storage: An experimental study," Energy, Elsevier, vol. 255(C).
    2. Obai Younis & Sameh E. Ahmed & Aissa Abderrahmane & Abdulaziz Alenazi & Ahmed M. Hassan, 2023. "Hydrothermal Mixed Convection in a Split-Lid-Driven Triangular Cavity Suspended by NEPCM," Mathematics, MDPI, vol. 11(6), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8103300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.