Author
Listed:
- Gangqiang Xiong
- Shengqian Zheng
- Jiang Wang
- Zhanchuan Cai
- Dongxu Qi
Abstract
Scrambling transform is an important tool for image encryption and hiding. A new class of scrambling algorithms is obtained by exploiting negative integer as the base of number representation to express the natural numbers. Unlike Arnold transform, the proposed scrambling transform is one-dimensional and nonlinear, and an image can be shuffled by using the proposed transform to rearrange the rows and columns of the image separately or to permute the pixels of the image after scanned into a sequence of pixels; it can be also applied to shuffle certain part region of an image. Firstly, the transformation algorithm for converting nonnegative integers in base to the corresponding integers in base is given in this paper, which is the computational core of scrambling transform and the basis of studying scrambling transform. Then, the three kinds of transforms are introduced, that is, negative base transform (abbreviated as NBT), modular negative base transform (MNBT), and local negative base transform (LNBT) with three parameters, where NBT is an injection and MNBT a surjection and LNBT a bijection. The minimum transform periods of LNBT are calculated for some different values of the three parameters, and the algorithm for calculating the inverse transform of LNBT is given. The image scrambled by LBNT can be recovered by the transform period or the inverse transform. Numerical experiments show that LNBT is an efficient scrambling transform and a strong operation of confusing gray values of pixels in the application of image encryption. Therefore, the proposed transform is a novel tool for information hiding and encryption of two-dimensional image and one-dimensional audio.
Suggested Citation
Gangqiang Xiong & Shengqian Zheng & Jiang Wang & Zhanchuan Cai & Dongxu Qi, 2018.
"Local Negative Base Transform and Image Scrambling,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-18, June.
Handle:
RePEc:hin:jnlmpe:8087958
DOI: 10.1155/2018/8087958
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8087958. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.