IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/806916.html
   My bibliography  Save this article

Transportation Network Design considering Morning and Evening Peak-Hour Demands

Author

Listed:
  • Hua Wang
  • Gui-Yuan Xiao
  • Li-Ye Zhang
  • Yangbeibei Ji

Abstract

Previous studies of transportation network design problem (NDP) always consider one peak-hour origin-destination (O-D) demand distribution. However, the NDP based on one peak-hour O-D demand matrix might be unable to model the real traffic patterns due to diverse traffic characteristics in the morning and evening peaks and impacts of network structure and link sensitivity. This paper proposes an NDP model simultaneously considering both morning and evening peak-hour demands. The NDP problem is formulated as a bilevel programming model, where the upper level is to minimize the weighted sum of total travel time for network users travelling in both morning and evening commute peaks, and the lower level is to characterize user equilibrium choice behaviors of the travelers in two peaks. The proposed NDP model is transformed into an equivalent mixed integer linear programming (MILP), which can be efficiently solved by optimization solvers. Numerical examples are finally performed to demonstrate the effectiveness of the developed model. It is shown that the proposed NDP model has more promising design effect of improving network efficiency than the traditional NDP model considering one peak-hour demand and avoids the misleading selection of improved links.

Suggested Citation

  • Hua Wang & Gui-Yuan Xiao & Li-Ye Zhang & Yangbeibei Ji, 2014. "Transportation Network Design considering Morning and Evening Peak-Hour Demands," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, March.
  • Handle: RePEc:hin:jnlmpe:806916
    DOI: 10.1155/2014/806916
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/806916.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/806916.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/806916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:806916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.