Author
Abstract
The task of human motion recognition based on video is widely concerned, and its research results have been widely used in intelligent human-computer interaction, virtual reality, intelligent monitoring, security, multimedia content analysis, etc. The purpose of this study is to explore the human action recognition in the football scene combined with learning quality related multimodal features. The method used in this study is to select BN-Inception as the underlying feature extraction network and use uncontrolled environment and real world to capture datasets UCFl01 and HMDB51, and pretraining is carried out on the ImageNet dataset. The spatial depth convolution network takes image frame as input, and the temporal depth convolution network takes stacked optical flow as input to carry out human action multimodal identification. In the results of multimodal feature fusion, the accuracy of UCFl01 dataset is generally high, all of which are over 80%, and the highest is 95.2%, while the accuracy of HMDB51 dataset is about 70%, and the lowest is only 56.3%. It can be concluded that the method of this study has higher accuracy and better effect in multimodal feature acquisition, and the accuracy of single-mode feature recognition is significantly lower than that of multimodal feature recognition. It provides an effective method for the multimodal feature of human motion recognition in the scene of football or sports.
Suggested Citation
Yuzhou Gao & Guoquan Ma, 2021.
"Human Motion Recognition Based on Multimodal Characteristics of Learning Quality in Football Scene,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-8, August.
Handle:
RePEc:hin:jnlmpe:7963616
DOI: 10.1155/2021/7963616
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7963616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.