IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7959761.html
   My bibliography  Save this article

Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition

Author

Listed:
  • Exequiel Mallea-Zepeda
  • Eber Lenes
  • Elvis Valero

Abstract

We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.

Suggested Citation

  • Exequiel Mallea-Zepeda & Eber Lenes & Elvis Valero, 2018. "Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-14, January.
  • Handle: RePEc:hin:jnlmpe:7959761
    DOI: 10.1155/2018/7959761
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/7959761.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/7959761.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7959761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgenii S. Baranovskii & Olga Yu. Shishkina, 2024. "Generalized Boussinesq System with Energy Dissipation: Existence of Stationary Solutions," Mathematics, MDPI, vol. 12(5), pages 1-15, March.
    2. Evgenii S. Baranovskii, 2021. "Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 623-645, May.
    3. Evgenii S. Baranovskii & Anastasia A. Domnich & Mikhail A. Artemov, 2024. "Mathematical Analysis of the Poiseuille Flow of a Fluid with Temperature-Dependent Properties," Mathematics, MDPI, vol. 12(21), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7959761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.