IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7908737.html
   My bibliography  Save this article

A Hybrid Approach for Evaluating Faulty Behavior Risk of High-Risk Operations Using ANP and Evidence Theory

Author

Listed:
  • Xia-Zhong Zheng
  • Fei Wang
  • Jian-Lan Zhou

Abstract

Hydropower project construction is a high-risk operation, where accidents occur frequently. Moreover, the factors leading to accidents are often human factors, so safety evaluation of these factors for the hydropower projects’ work system is very significant. The Human Factors Analysis and Classification System (HFACS) framework is applied to build evaluation system. In the evaluation process, correlation analysis is used to form the intercriteria analysis matrix that helps the decision makers to build impact relation matrix. Factor weights are calculated by the Analytic Network Process (ANP). In the index value determination step, the evidence theory is used to eliminate the conflicts of three decision makers and the index values are then calculated. The faulty behavior risk (FBR) assessment value is finally obtained. The proposed method is practical and its applicability is proved by an example.

Suggested Citation

  • Xia-Zhong Zheng & Fei Wang & Jian-Lan Zhou, 2017. "A Hybrid Approach for Evaluating Faulty Behavior Risk of High-Risk Operations Using ANP and Evidence Theory," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, August.
  • Handle: RePEc:hin:jnlmpe:7908737
    DOI: 10.1155/2017/7908737
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/7908737.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/7908737.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/7908737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Bo Shao & Zhigen Hu & Dawei Liu, 2019. "Using Improved Principal Component Analysis to Explore Construction Accident Situations from the Multi-Dimensional Perspective: A Chinese Study," IJERPH, MDPI, vol. 16(18), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7908737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.