IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7901861.html
   My bibliography  Save this article

Selection of Semiconductor Packaging Materials by Combined Fuzzy AHP-Entropy and Proximity Index Value Method

Author

Listed:
  • Sedat Bingol
  • Ghous Ali

Abstract

The residue of no-clean flux (NCF) on the printed circuit board assembly has been one of the major reasons for corrosion reliability failure of electronic devices. The source of aggressive contamination is the carboxylic acid activator as the main cleaning agent for soldering surfaces. Selecting the suitable activator has always been one of the concerns due to its conflicting properties, for example, suberic acid has a lower boiling point that will help in minimizing the residue; however, its dissociation constant is low which will increase the aggressive residue. The selection of a suitable activator based on the conflicting criteria is a multicriteria decision-making (MCDM) problem. In this study, thirty-one carboxylic acids (mono, di, tri, and hydroxyl) were ranked based on the six different criteria, i.e., melting point, molecular weight, boiling point, acid dissociation constant (pKaa value), solubility, and number of carboxylic acids using combined fuzzy AHP-entropy and the proximity index value method. Weight of the criterion was calculated using combined fuzzy AHP-entropy; whereas, ranking of the alternative carboxylic acid was done by the proximity index value method. First, the ranking was done based on the overall carboxylic acid; consequently, the groupwise ranking was also evaluated. As a result of this study, margaric acid occupied rank 1 out of all the thirty-one carboxylic acids and monocarboxylic acids; whereas, malonic acid acquired the lowest rank. In addition, out of 9 dicarboxylic acids, sebacic acid was the most suitable alternative. In the case of tricarboxylic acids, trimesic acid was a suitable alternative. Sensitivity analysis was performed to verify the reliability and consistency of the result obtained through applied MCDM.

Suggested Citation

  • Sedat Bingol & Ghous Ali, 2022. "Selection of Semiconductor Packaging Materials by Combined Fuzzy AHP-Entropy and Proximity Index Value Method," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, December.
  • Handle: RePEc:hin:jnlmpe:7901861
    DOI: 10.1155/2022/7901861
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7901861.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7901861.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/7901861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7901861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.