Author
Listed:
- Xiaohong Duan
- Tianyong Niu
- Qi Huang
Abstract
The traditional method for solving the dynamic emergency vehicle dispatching problem can only get a local optimal strategy in each horizon. In order to obtain the dispatching strategy that can better respond to changes in road conditions during the whole dispatching process, the real-time and time-dependent link travel speeds are fused, and a time-dependent polygonal-shaped link travel speed function is set up to simulate the predictable changes in road conditions. Response times, accident severity, and accident time windows are taken as key factors to build an emergency vehicle dispatching model integrating dynamic emergency vehicle routing and selection. For the unpredictable changes in road conditions caused by accidents, the dispatching strategy is adjusted based on the real-time link travel speed. In order to solve the dynamic emergency vehicle dispatching model, an improved shuffled frog leaping algorithm (ISFLA) is proposed. The global search of the improved algorithm uses the probability model of estimation of distribution algorithm to avoid the partial optimal solution. Based on the Beijing expressway network, the efficacy of the model and the improved algorithm were tested from three aspects. The results have shown the following: Compared with SFLA, the optimization performance of ISFLA is getting better and better with the increase of the number of decision variables. When the possible emergency vehicle selection strategies are 8 15 , the objective function value of optimal selection strategies obtained by the base algorithm is 210.10% larger than that of ISFLA. The prediction error of the travel speed affects the accuracy of the initial emergency vehicle dispatching. The prediction error of ±10 can basically meet the requirements of the initial dispatching. The adjustment of emergency vehicle dispatching strategy can successfully bypassed road sections affected by accidents and shorten the response time.
Suggested Citation
Xiaohong Duan & Tianyong Niu & Qi Huang, 2018.
"An Improved Shuffled Frog Leaping Algorithm and Its Application in Dynamic Emergency Vehicle Dispatching,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-34, March.
Handle:
RePEc:hin:jnlmpe:7896926
DOI: 10.1155/2018/7896926
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7896926. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.