IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/786120.html
   My bibliography  Save this article

Modeling and Optimization of Collaborative Passenger Control in Urban Rail Stations under Mass Passenger Flow

Author

Listed:
  • Lili Wang
  • Xuedong Yan
  • Yun Wang

Abstract

With the rapid development of urban rail transit, the phenomenon of outburst passenger flows flocking to stations is occurring much more frequently. Passenger flow control is one of the main methods used to ensure passengers’ safety. While most previous studies have only focused on control measures inside the target station, ignoring the collaboration between stops, this paper puts emphasis on joint passenger control methods during the occurrence of large passenger flows. To provide a theoretic description for the problem under consideration, an integer programming model is built, based on the analysis of passenger delay and the processes by which passengers alight and board. Taking average passenger delay as the objective, the proposed model aims to disperse the pressure of oversaturated stations into others, achieving the optimal state for the entire line. The model is verified using a case study and the results show that restricted access measures taken collaboratively by stations produce less delay and faster evacuation. Finally, a sensitivity analysis is conducted, from which we find that the departure interval and maximum conveying capacity of the train affect passenger delay markedly in the process of passenger control and infer that control measures should be taken at stations near to the one experiencing an emergency.

Suggested Citation

  • Lili Wang & Xuedong Yan & Yun Wang, 2015. "Modeling and Optimization of Collaborative Passenger Control in Urban Rail Stations under Mass Passenger Flow," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, March.
  • Handle: RePEc:hin:jnlmpe:786120
    DOI: 10.1155/2015/786120
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/786120.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/786120.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/786120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hexin Hu & Jitao Li & Shuai Wu, 2022. "Simulation Evaluation of a Current Limiting Scheme in an Urban Rail Transit Network," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:786120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.