Author
Listed:
- Bin Liu
- KuanJun Zhu
- XinMin Li
- XuePing Zhan
Abstract
It is well known that there is a hysteresis phenomenon in the amplitude variation in the iced conductor galloping with the wind velocity, which will have more obvious disadvantages to the overhead transmission lines. But hysteresis characteristics in the conductor galloping have not received much attention. In this paper, a continuum model of the conductor galloping with D-shape ice is derived by using Hamilton principle, where the initial deformation, the geometric nonlinearity caused by the large deformation, and the aerodynamic nonlinearity are considered. The aerodynamic forces are described by using the quasi steady hypothesis, where the aerodynamic coefficients are expanded by the polynomial curves with a third order and a ninth order, respectively. The hysteresis phenomenon is analyzed by using the approximate solutions of the Galerkin discretized equation derived from the continuum model by means of the harmonic balance method. The influence of the different factors, dynamic angle of attack, span length, initial tension, and conductor mass, is obtained in different galloping instability intervals. And two important aspects about the point of the hysteresis phenomenon onset and the size of the hysteresis region over the wind velocities are analyzed under different conditions.
Suggested Citation
Bin Liu & KuanJun Zhu & XinMin Li & XuePing Zhan, 2013.
"Hysteresis Phenomenon in the Galloping of the D-Shape Iced Conductor,"
Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, November.
Handle:
RePEc:hin:jnlmpe:784239
DOI: 10.1155/2013/784239
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:784239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.