Author
Listed:
- Lingjie Wu
- Ming Zhou
- Yanwen Wang
- Le Wang
- Xu Tian
Abstract
Over the past few years, with the access of large-scale new energy sources, the problem of subsynchronous oscillation (SSO) in power systems has presented a novel multisource and multitransformation form, which may be significantly threatening. Conventional control and protection methods primarily give rise to device protection actions in the presence of severe oscillation. On the whole, online monitoring only identifies the frequency and amplitude, whereas it cannot identify the attenuation factor. Moreover, the determination of the warning threshold is more dependent on human experience, so the reliability and rapidity of the early warning cannot be ensured. This study conducts an in-depth investigation of the wind-thermal power bundling and extreme high-voltage alternating current- (AC-) direct current (DC) hybrid transmission system. The major factors of SSO using this system are unclear, which brings difficulties to effective monitoring. Given the mentioned problems, a method combining Levenberg–Marquardt- (LM-) Backpropagation (BP) machine learning and Sensitivity Analysis (SA) and principal component analysis (PCA) is developed. First, the sensitivity analysis of each factor in the system is conducted to identify the major factors of SSO. Subsequently, the historical sample data are reduced with the principal component analysis to reduce the redundancy, which is adopted to train the regression model to determine the attenuation factor and frequency and then send them to the classifier for classification to complete the task of the assessment model. When a novel data signal is uploaded, the assessment model identifies the attenuation factor and frequency and subsequently determines the presence of SSO. Accordingly, an early warning is conducted. The system's refined simulation model and machine learning model verify the effectiveness of the method.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7802350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.