IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7653946.html
   My bibliography  Save this article

A Model of High-Dimensional Feature Reduction Based on Variable Precision Rough Set and Genetic Algorithm in Medical Image

Author

Listed:
  • Zhou Tao
  • Lu Huiling
  • Fuyuan Hu
  • Shi Qiu
  • Wu Cuiying

Abstract

Aiming at the shortcomings of high feature reduction using traditional rough sets, such as insensitivity with noise data and easy loss of potentially useful information, combining with genetic algorithm, in this paper, a VPRS-GA (Variable Precision Rough Set--Genetic Algorithm) model for high-dimensional feature reduction of medical image is proposed. Firstly, rigid inclusion of the lower approximation is extended to partial inclusion by classification error rate β in the traditional rough set model, and the ability dealing with noise data is improved. Secondly, some factors of feature reduction are considered, such as attribute dependency, attributes reduction length, and gene coding weight. A general framework of fitness function is put forward, and different fitness functions are constructed by using different factors such as weight and classification error rate β . Finally, 98 dimensional features of PET/CT lung tumor ROI are extracted to build decision information table of lung tumor patients. Three kinds of experiments in high-dimensional feature reduction are carried out, using support vector machine to verify the influence of recognition accuracy in different fitness function parameters and classification error rate. Experimental results show that classification accuracy is affected deeply by different weight values under the invariable classification error rate condition and by increasing classification error rate under the invariable weigh value condition. Hence, in order to achieve better recognition accuracy, different problems use suitable parameter combination.

Suggested Citation

  • Zhou Tao & Lu Huiling & Fuyuan Hu & Shi Qiu & Wu Cuiying, 2020. "A Model of High-Dimensional Feature Reduction Based on Variable Precision Rough Set and Genetic Algorithm in Medical Image," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, May.
  • Handle: RePEc:hin:jnlmpe:7653946
    DOI: 10.1155/2020/7653946
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7653946.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7653946.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7653946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junqi Zhu & Haotian Zheng & Li Yang & Shanshan Li & Liyan Sun & Jichao Geng, 2023. "Evaluation of deep coal and gas outburst based on RS-GA-BP," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2531-2551, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7653946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.