IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/765013.html
   My bibliography  Save this article

Spectral Local Linearisation Approach for Natural Convection Boundary Layer Flow

Author

Listed:
  • S. S. Motsa
  • Z. G. Makukula
  • S. Shateyi

Abstract

The present work introduces a spectral local linearisation method (SLLM) to solve a natural convection boundary layer flow problem with domain transformation. It is customary to find solutions of semi-infinite interval problems by first truncating the interval and subsequently applying a suitable numerical method. However, this gives rise to increased error terms in the numerical solution. Carrying out a transformation of the semi-infinite interval problems into singular problems posed on a finite interval can avoid the domain truncation error and enables the efficient application of collocation methods. The SLLM is based on linearising and decoupling nonlinear systems of equations into a sequence or subsystems of differential equations which are then solved using spectral collocation methods. A comparative study between the SLLM and existing results in the literature was carried out to validate the results. The method has shown to be a promising efficient tool for nonlinear boundary value problems as it gives converging results after very few iterations.

Suggested Citation

  • S. S. Motsa & Z. G. Makukula & S. Shateyi, 2013. "Spectral Local Linearisation Approach for Natural Convection Boundary Layer Flow," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, September.
  • Handle: RePEc:hin:jnlmpe:765013
    DOI: 10.1155/2013/765013
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/765013.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/765013.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/765013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tunde Abdulkadir Yusuf & Adeshina Taofeeq Adeosun & Victor Olajide Akinsola & Ramoshweu Solomon Lebelo & Oluwadamilare Joseph Akinremi, 2023. "Numerical Investigation for Nonlinear Thermal Radiation in MHD Cu–Water Nanofluid Flow in a Channel with Convective Boundary Conditions," Mathematics, MDPI, vol. 11(15), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:765013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.