IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/762853.html
   My bibliography  Save this article

Artificial Bee Colony Algorithm Based on -Means Clustering for Multiobjective Optimal Power Flow Problem

Author

Listed:
  • Liling Sun
  • Jingtao Hu
  • Hanning Chen

Abstract

An improved multiobjective ABC algorithm based on -means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on -means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II), the multiobjective particle swarm optimizer (MOPSO), and the multiobjective ABC (MOABC). Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF) problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.

Suggested Citation

  • Liling Sun & Jingtao Hu & Hanning Chen, 2015. "Artificial Bee Colony Algorithm Based on -Means Clustering for Multiobjective Optimal Power Flow Problem," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-18, May.
  • Handle: RePEc:hin:jnlmpe:762853
    DOI: 10.1155/2015/762853
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/762853.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/762853.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/762853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:762853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.