IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/760459.html
   My bibliography  Save this article

Two-Phase Iteration for Value Function Approximation and Hyperparameter Optimization in Gaussian-Kernel-Based Adaptive Critic Design

Author

Listed:
  • Xin Chen
  • Penghuan Xie
  • Yonghua Xiong
  • Yong He
  • Min Wu

Abstract

Adaptive Dynamic Programming (ADP) with critic-actor architecture is an effective way to perform online learning control. To avoid the subjectivity in the design of a neural network that serves as a critic network, kernel-based adaptive critic design (ACD) was developed recently. There are two essential issues for a static kernel-based model: how to determine proper hyperparameters in advance and how to select right samples to describe the value function. They all rely on the assessment of sample values. Based on the theoretical analysis, this paper presents a two-phase simultaneous learning method for a Gaussian-kernel-based critic network. It is able to estimate the values of samples without infinitively revisiting them. And the hyperparameters of the kernel model are optimized simultaneously. Based on the estimated sample values, the sample set can be refined by adding alternatives or deleting redundances. Combining this critic design with actor network, we present a Gaussian-kernel-based Adaptive Dynamic Programming (GK-ADP) approach. Simulations are used to verify its feasibility, particularly the necessity of two-phase learning, the convergence characteristics, and the improvement of the system performance by using a varying sample set.

Suggested Citation

  • Xin Chen & Penghuan Xie & Yonghua Xiong & Yong He & Min Wu, 2015. "Two-Phase Iteration for Value Function Approximation and Hyperparameter Optimization in Gaussian-Kernel-Based Adaptive Critic Design," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, September.
  • Handle: RePEc:hin:jnlmpe:760459
    DOI: 10.1155/2015/760459
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/760459.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/760459.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/760459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:760459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.