Author
Listed:
- Yuming Heng
- Minggong Wu
- Xiangxi Wen
- Chiara Bedon
Abstract
To address the controller workload with the forecast, the capacity of the air traffic management system is effectively enhanced. It should be based on a specific analysis of the controller workload. In the current controller workload studies, there is no clear means to analyze the process of controller workload development propagation. In this paper, we propose a new method for analyzing the factors influencing the controller workload. This method takes into account the influence of various situations in the actual work of controllers and objectively quantifies the complexity of work conditions. A complex network is constructed by treating various factors as nodes and the complexity relationships between these nodes as edges. The complexity network was then tested using the contagion model. The sum of the number of times of infecting other nodes and being infected in the detection result was defined as the infection capacity of the nodes, and the point with the strongest infection capacity was controlled and analyzed. The results show that the point with the strongest infection capacity is the key factor for the development of controller workload generation. In addition, the analysis of the key factors using a backpropagation neural network shows that the prediction of the controller workload can be made by the key factors. It will provide a new effective method to control controller workload and improve air traffic control capability.
Suggested Citation
Yuming Heng & Minggong Wu & Xiangxi Wen & Chiara Bedon, 2022.
"Identifying Key Risk Factors in Air Traffic Controller Workload by SEIR Model,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, October.
Handle:
RePEc:hin:jnlmpe:7600754
DOI: 10.1155/2022/7600754
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7600754. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.