Author
Listed:
- Yue Tan
- Jing Li
- Yuan Li
- Chunbao Liu
Abstract
An approach was presented to improve the performance prediction of marine propeller through computational fluid dynamics (CFD). After a series of computations were conducted, it was found that the passage in the former study was too narrow, resulting in the unnecessary radial outer boundary effects. Hence, in this study, a fatter passage model was employed to avoid unnecessary effects, in which the diameter was the same as the length from the propeller to the downstream outlet and the diameter was larger than the previous study. The diameter and length of the passage were 5 D and 8 D , respectively. The propeller DTMB P5168 was used to evaluate the fat passage model. During simulation, the classical RANS model (standard k - ) and the Multiple Reference Frame (MRF) approach were employed after accounting for other factors. The computational performance results were compared with the experimental values, which showed that they were in good agreement. The maximum errors of K t and K q were less than 5% and 3% on different advance coefficients J except 1.51, respectively, and that of was less than 2.62%. Hence the new model obtains more accurate performance prediction compared with published literatures. The circumferentially averaged velocity components were also compared with the experimental results. The axial and tangential velocity components were also in good agreement with the experimental data. Specifically, the errors of the axial and tangential velocity components were less than 3%, when the r/R was not less than 3.4. When the J value was larger, the variation trends of radial velocity were consistent with the experimental data. In conclusion, the fat passage model proposed here was applicable to obtain the highly accurate predicted results.
Suggested Citation
Yue Tan & Jing Li & Yuan Li & Chunbao Liu, 2019.
"Improved Performance Prediction of Marine Propeller: Numerical Investigation and Experimental Verification,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, April.
Handle:
RePEc:hin:jnlmpe:7501524
DOI: 10.1155/2019/7501524
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7501524. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.