Author
Listed:
- Danyang Jiang
- Honghui Chen
- Fei Cai
Abstract
Query autocompletion (QAC) is a common interactive feature of web search engines. It aims at assisting users to formulate queries and avoiding spelling mistakes by presenting them with a list of query completions as soon as they start typing in the search box. Existing QAC models mostly rank the query completions by their past popularity collected in the query logs. For some queries, their popularity exhibits relatively stable or periodic behavior while others may experience a sudden rise in their query popularity. Current time-sensitive QAC models focus on either periodicity or recency and are unable to respond swiftly to such sudden rise, resulting in a less optimal QAC performance. In this paper, we propose a hybrid QAC model that considers two temporal patterns of query’s popularity, that is, periodicity and burst trend. In detail, we first employ the Discrete Fourier Transform (DFT) to identify the periodicity of a query’s popularity, by which we forecast its future popularity. Then the burst trend of query’s popularity is detected and incorporated into the hybrid model with its cyclic behavior. Extensive experiments on a large, real-world query log dataset infer that modeling the temporal patterns of query popularity in the form of its periodicity and its burst trend can significantly improve the effectiveness of ranking query completions.
Suggested Citation
Danyang Jiang & Honghui Chen & Fei Cai, 2017.
"Exploiting Query’s Temporal Patterns for Query Autocompletion,"
Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-8, March.
Handle:
RePEc:hin:jnlmpe:7490879
DOI: 10.1155/2017/7490879
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7490879. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.