IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7474839.html
   My bibliography  Save this article

Robust Structure Preserving Nonnegative Matrix Factorization for Dimensionality Reduction

Author

Listed:
  • Bingfeng Li
  • Yandong Tang
  • Zhi Han

Abstract

As a linear dimensionality reduction method, nonnegative matrix factorization (NMF) has been widely used in many fields, such as machine learning and data mining. However, there are still two major drawbacks for NMF: (a) NMF can only perform semantic factorization in Euclidean space, and it fails to discover the intrinsic geometrical structure of high-dimensional data distribution. (b) NMF suffers from noisy data, which are commonly encountered in real-world applications. To address these issues, in this paper, we present a new robust structure preserving nonnegative matrix factorization (RSPNMF) framework. In RSPNMF, a local affinity graph and a distant repulsion graph are constructed to encode the geometrical information, and noisy data influence is alleviated by characterizing the data reconstruction term of NMF with -norm instead of -norm. With incorporation of the local and distant structure preservation regularization term into the robust NMF framework, our algorithm can discover a low-dimensional embedding subspace with the nature of structure preservation. RSPNMF is formulated as an optimization problem and solved by an effective iterative multiplicative update algorithm. Experimental results on some facial image datasets clustering show significant performance improvement of RSPNMF in comparison with the state-of-the-art algorithms.

Suggested Citation

  • Bingfeng Li & Yandong Tang & Zhi Han, 2016. "Robust Structure Preserving Nonnegative Matrix Factorization for Dimensionality Reduction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-14, June.
  • Handle: RePEc:hin:jnlmpe:7474839
    DOI: 10.1155/2016/7474839
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/7474839.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/7474839.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/7474839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7474839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.