IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/735014.html
   My bibliography  Save this article

Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System

Author

Listed:
  • Feng Hu
  • Jin Shi

Abstract

The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1) the hyperedges are generated randomly in traditional hypergraph model; (2) the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and NN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and -measure.

Suggested Citation

  • Feng Hu & Jin Shi, 2015. "Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, June.
  • Handle: RePEc:hin:jnlmpe:735014
    DOI: 10.1155/2015/735014
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/735014.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/735014.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/735014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:735014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.