Author
Listed:
- Junbo Huang
- Zhen Xu
- Feng Yang
- Wenjuan Zhang
- Shuyu Cai
- Jiqiang Luo
- Guobo Xie
- Tianyu Li
- Naeem Jan
Abstract
Understanding the spatial and temporal distribution patterns of fire is of ecological, social and economic importance. The purpose of this study is to examine the spatial distribution of high fire risk using machine learning algorithms and early warning weather in high-risk areas. Take the satellite monitored fire point data in Yunnan Province during 2015–2019 as an example. The spatial distribution law of high-density parts is found using hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm, and the correlation degree analysis of high-density fire areas based on clustering and annual mean meteorological factors is carried out using grey correlation analysis (GCA) method. Results illustrates that within five years, fires frequently occurred in the seven regions of Wenshan Zhuang and Miao Autonomous Prefecture, Honghe Hani and Yi Autonomous Prefecture, Lijiang City, Pu’er City, and Xishuangbanna Dai Autonomous Prefecture. Among them, the fire in Lijiang had the greatest relationship with precipitation, Pu’er and Xishuangbanna had the greatest correlation with temperature, and Honghe Hani and Wenshan Zhuang were most affected by wind speed. This article acclaims fire prevention in key periods, key areas, key weather and reinforces the protection of transmission lines in the risk area.
Suggested Citation
Junbo Huang & Zhen Xu & Feng Yang & Wenjuan Zhang & Shuyu Cai & Jiqiang Luo & Guobo Xie & Tianyu Li & Naeem Jan, 2022.
"Fire Risk Assessment and Warning Based on Hierarchical Density-Based Spatial Clustering Algorithm and Grey Relational Analysis,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, April.
Handle:
RePEc:hin:jnlmpe:7339312
DOI: 10.1155/2022/7339312
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7339312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.