IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7286460.html
   My bibliography  Save this article

Study of the Fractional-Order HIV-1 Infection Model with Uncertainty in Initial Data

Author

Listed:
  • Yong Wu
  • Shabir Ahmad
  • Aman Ullah
  • Kamal Shah
  • Nasser Hassen Sweilam

Abstract

Uncertainty always lives with us. We cannot take exact measurement of initial conditions or parameters values in a mathematical model. As humans, we are remaining alive in an environment where the uncertainties lie in the modelling of physical phenomena. There might be some incomplete information or estimation of the parameter or initial values. To handle uncertainty, we use fuzzy operators rather than classical operators. In this paper, we study a model of HIV-1 infection by taking uncertainty in the initial data under Caputo fractional operator. We explore the existence and uniqueness of the results through fixed-point theory. We study the Ulam–Hyres stability of the considered model. By using the fuzzy Laplace Adomian decomposition method, numerical results are obtained for specific fuzzy initial conditions. To better understand the behaviour of the fuzzy solution, we present the obtained numerical results graphically for various fractional orders where the uncertainty lies in [0, 1].

Suggested Citation

  • Yong Wu & Shabir Ahmad & Aman Ullah & Kamal Shah & Nasser Hassen Sweilam, 2022. "Study of the Fractional-Order HIV-1 Infection Model with Uncertainty in Initial Data," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-16, January.
  • Handle: RePEc:hin:jnlmpe:7286460
    DOI: 10.1155/2022/7286460
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7286460.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7286460.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/7286460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iskakova, Kulpash & Alam, Mohammad Mahtab & Ahmad, Shabir & Saifullah, Sayed & Akgül, Ali & Yılmaz, Gülnur, 2023. "Dynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 219-245.
    2. Shahram Rezapour & Sina Etemad & Ravi P. Agarwal & Kamsing Nonlaopon, 2022. "On a Lyapunov-Type Inequality for Control of a ψ -Model Thermostat and the Existence of Its Solutions," Mathematics, MDPI, vol. 10(21), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7286460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.