IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7258780.html
   My bibliography  Save this article

Adaptive Cultural Algorithm-Based Cuckoo Search for Time-Dependent Vehicle Routing Problem with Stochastic Customers Using Adaptive Fractional Kalman Speed Prediction

Author

Listed:
  • H. Xue

Abstract

For the Time-Dependent Vehicle Routing Problem with Stochastic Customers (TDVRPSC), an adaptive Cultural Algorithm-Based Cuckoo Search (CACS) has been proposed in this paper. The convergence of the new algorithm is proved. An adaptive fractional Kalman filter (AFKF) for traffic speed prediction is proposed. An adaptive mechanism for choosing the covariance of state noise is designed. Its mathematical process is proved. Several benchmark instances with different scales are tested, and new solutions are discovered, which are better than the published solutions. The effects of the parameters on the convergence and the results are studied. According to cargo weight of customers to be delivered, the customers can be divided into large, small, and retail customers. The algorithm is tested with fixed demand probability and also different customer types with stochastic demand. The traffic speeds in different business districts in Xiamen at different times are predicted by AFKF. The results show that AFKF has smaller prediction error and better prediction accuracy than fractional Kalman filter and Kalman filter. The effect of different fractional orders on prediction error is compared. The performance of the new algorithm is compared with that of the cultural algorithm and the Cuckoo Search. The result shows that the new algorithm can efficiently and effectively solve DTVRPSC and improve the accuracy of vehicle routing planning of time-varying actual urban traffic road.

Suggested Citation

  • H. Xue, 2020. "Adaptive Cultural Algorithm-Based Cuckoo Search for Time-Dependent Vehicle Routing Problem with Stochastic Customers Using Adaptive Fractional Kalman Speed Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, July.
  • Handle: RePEc:hin:jnlmpe:7258780
    DOI: 10.1155/2020/7258780
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7258780.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7258780.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7258780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Themistoklis Stamadianos & Andromachi Taxidou & Magdalene Marinaki & Yannis Marinakis, 2024. "Swarm intelligence and nature inspired algorithms for solving vehicle routing problems: a survey," Operational Research, Springer, vol. 24(3), pages 1-45, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7258780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.