IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7247093.html
   My bibliography  Save this article

Minimum Energy Trajectory Optimization for Driving Systems of Palletizing Robot Joints

Author

Listed:
  • Ying He
  • Jiangping Mei
  • Zhiwei Fang
  • Fan Zhang
  • Yanqin Zhao

Abstract

Palletizing robot is widely used in logistics operation. At present, people pay attention to not only the loading capacity and working efficiency of palletizing robots, but also the energy consumption in their working process. This paper takes MD1200-YJ palletizing robot as the research object and studies the problem of low energy consumption optimization of joint driving system from the perspective of trajectory optimization. Firstly, a multifactor dynamic model of palletizing robot is established based on the conventional inverse rigid body dynamic model of the robot, the Stribeck friction model and the spring balance torque model. And then based on joint torque, friction torque, motion parameter, and joule’s law, the useful work model, thermal loss model of joint motor, friction energy consumption model of joint system, and total energy consumption model of palletizing robot are established, and through simulation and experiment, the correctness of the multifactor dynamic model and energy consumption model is verified. Secondly, based on the Fourier series approximation method to construct the joint trajectory expression, the minimum total energy consumption as the optimization objective, with coefficients of Fourier series as optimization variables, the motion parameters of initial and final position, and running time constant as constraint conditions, the genetic algorithm is used to solve the optimization problem. Finally, through the simulation analysis the optimized Fourier series motion law and the 3-4-5 polynomial motion law are comprehensively evaluated to verify the effectiveness of the optimization method. Moreover, it provides the theoretical basis for the follow-up research and points out the direction of improvement.

Suggested Citation

  • Ying He & Jiangping Mei & Zhiwei Fang & Fan Zhang & Yanqin Zhao, 2018. "Minimum Energy Trajectory Optimization for Driving Systems of Palletizing Robot Joints," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-26, December.
  • Handle: RePEc:hin:jnlmpe:7247093
    DOI: 10.1155/2018/7247093
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/7247093.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/7247093.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7247093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. József Vásárhelyi & Omar M. Salih & Hussam Mahmod Rostum & Rabab Benotsname, 2023. "An Overview of Energies Problems in Robotic Systems," Energies, MDPI, vol. 16(24), pages 1-24, December.
    2. Rabab Benotsmane & György Kovács, 2023. "Optimization of Energy Consumption of Industrial Robots Using Classical PID and MPC Controllers," Energies, MDPI, vol. 16(8), pages 1-28, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7247093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.