IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/720849.html
   My bibliography  Save this article

Study on Apparent Kinetic Prediction Model of the Smelting Reduction Based on the Time-Series

Author

Listed:
  • Guo-feng Fan
  • Shan Qing
  • Hua Wang
  • Zhe Shi
  • Wei-Chiang Hong
  • Lin Dai

Abstract

A series of direct smelting reduction experiment has been carried out with high phosphorous iron ore of the different bases by thermogravimetric analyzer. The derivative thermogravimetric (DTG) data have been obtained from the experiments. One-step forward local weighted linear (LWL) method , one of the most suitable ways of predicting chaotic time-series methods which focus on the errors, is used to predict DTG. In the meanwhile, empirical mode decomposition-autoregressive (EMD-AR), a data mining technique in signal processing, is also used to predict DTG. The results show that (1) EMD-AR(4) is the most appropriate and its error is smaller than the former; (2) root mean square error (RMSE) has decreased about two-thirds; (3) standardized root mean square error (NMSE) has decreased in an order of magnitude. Finally in this paper, EMD-AR method has been improved by golden section weighting; its error would be smaller than before. Therefore, the improved EMD-AR model is a promising alternative for apparent reaction rate (DTG). The analytical results have been an important reference in the field of industrial control.

Suggested Citation

  • Guo-feng Fan & Shan Qing & Hua Wang & Zhe Shi & Wei-Chiang Hong & Lin Dai, 2012. "Study on Apparent Kinetic Prediction Model of the Smelting Reduction Based on the Time-Series," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-15, June.
  • Handle: RePEc:hin:jnlmpe:720849
    DOI: 10.1155/2012/720849
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2012/720849.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2012/720849.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/720849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongda, Tian & Shujiang, Li & Yanhong, Wang & Yi, Sha, 2017. "A prediction method based on wavelet transform and multiple models fusion for chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 158-172.
    2. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:720849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.