IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7194258.html
   My bibliography  Save this article

Cloud Manufacturing Service Composition Optimization with Improved Genetic Algorithm

Author

Listed:
  • Yongxiang Li
  • Xifan Yao
  • Min Liu

Abstract

Aiming at the problems in which there exists collocation between services and manufacturing tasks, multiobjective cloud manufacturing service composition optimization seldom considers the synergy degree of composite cloud services and the complexity of service composition, so a novel service composition optimization approach, called improved genetic algorithm based on entropy (IGABE), is put forward. First, the mathematical expressions of service collocation degree, composition synergy degree, composition entropy, and their related influence factors of the service composition are analyzed, and their definitions and calculation methods are given. Then, a multiobjective cloud manufacturing service composition optimization mathematical model is established. Moreover, crossover and mutation operators are improved by introducing normal cloud model theory and piecewise function, and improved roulette selection method is used to perform the selection operation. And the fitness function of the proposed IGABE is designed by combining Euclidean deviation with angular deviation. Finally, the manufacturing task of a wheeled cleaning robot is exemplified to verify the correctness of the proposed multiobjective optimization model for cloud manufacturing service composition and the effectiveness of the proposed algorithm, compared with Standard Genetic Algorithm (SGA), Hybrid Genetic Algorithm (HGA), and Cloud-entropy Enhanced Genetic Algorithm (CEGA). The studied results show that IGABE converges faster than SGA and HGA and can analyze and reflect the content difference expressed by the objective functions of service composition scheme and its approximation degree to the corresponding dimensions of the ideal point vector more comprehensively than CEGA. As such, the optimal service composition obtained by IGABE algorithm can better meet the complex needs of users.

Suggested Citation

  • Yongxiang Li & Xifan Yao & Min Liu, 2019. "Cloud Manufacturing Service Composition Optimization with Improved Genetic Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, July.
  • Handle: RePEc:hin:jnlmpe:7194258
    DOI: 10.1155/2019/7194258
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7194258.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7194258.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7194258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7194258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.