IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7167801.html
   My bibliography  Save this article

Neural Network Method for Solving Time-Fractional Telegraph Equation

Author

Listed:
  • Wubshet Ibrahim
  • Lelisa Kebena Bijiga

Abstract

Recently, the development of neural network method for solving differential equations has made a remarkable progress for solving fractional differential equations. In this paper, a neural network method is employed to solve time-fractional telegraph equation. The loss function containing initial/boundary conditions with adjustable parameters (weights and biases) is constructed. Also, in this paper, a time-fractional telegraph equation was formulated as an optimization problem. Numerical examples with known analytic solutions including numerical results, their graphs, weights, and biases were also discussed to confirm the accuracy of the method used. Also, the graphical and tabular results were analyzed thoroughly. The mean square errors for different choices of neurons and epochs have been presented in tables along with graphical presentations.

Suggested Citation

  • Wubshet Ibrahim & Lelisa Kebena Bijiga, 2021. "Neural Network Method for Solving Time-Fractional Telegraph Equation," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, May.
  • Handle: RePEc:hin:jnlmpe:7167801
    DOI: 10.1155/2021/7167801
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/7167801.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/7167801.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/7167801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajimohammadi, Zeinab & Baharifard, Fatemeh & Ghodsi, Ali & Parand, Kourosh, 2021. "Fractional Chebyshev deep neural network (FCDNN) for solving differential models," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Fang, Xing & Qiao, Leijie & Zhang, Fengyang & Sun, Fuming, 2023. "Explore deep network for a class of fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Li, Jin & Su, Xiaoning & Zhao, Kaiyan, 2023. "Barycentric interpolation collocation algorithm to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 340-367.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7167801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.