Author
Listed:
- Liangliang An
- Liangming Wang
- Ning Liu
- Jian Fu
Abstract
In this paper, we present a novel multisensor combinatory attitude determination method that enables high-accuracy measurement of the attitude of a high rotational speed rigid-body aircraft. We analyze the external moments of the aircraft during flight and develop the method using theoretical deductions based on the motion equations of a rigid body rotating around the centroid. The proposed method fuses the data measured from GPS, gyrometer, and magnetometer and uses the improved unscented Kalman filter (UKF) algorithm to perform filtering. First, appropriate assumptions and simplifying approximations are made for around-centroid motion equations of a rigid body according to the motion characteristics of the high rotational speed aircraft. Using these assumptions and approximations, the constraint equations between the Euler attitude angles and flight-path angle, trajectory deflection angle are derived to serve as the state equation. Second, the roll angle with error is calculated using the geomagnetic field model and the geomagnetic intensity measured by a three-axis magnetometer and then fused with the angular velocity information obtained from the gyroscope for constructing the measurement equations. Finally, the state equations are discretized using the Runge–Kutta method during the UKF prediction stage, improving the prediction accuracy. Simulation results show that the proposed method can effectively determine the attitude information of the high rotational speed aircraft, achieving high level of reliability and accuracy thanks to the combination of information from GPS, gyroscope, and magnetometer.
Suggested Citation
Liangliang An & Liangming Wang & Ning Liu & Jian Fu, 2020.
"Combinatory Attitude Determination Method for High Rotational Speed Rigid-Body Aircraft,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, April.
Handle:
RePEc:hin:jnlmpe:7130142
DOI: 10.1155/2020/7130142
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7130142. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.