IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/712417.html
   My bibliography  Save this article

Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

Author

Listed:
  • Jianzhou Wang
  • Shiqiang Jin
  • Shanshan Qin
  • Haiyan Jiang

Abstract

Swarm intelligence (SI) is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS) as well as the singular spectrum analysis (SSA), time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA) and support vector regression (SVR) in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

Suggested Citation

  • Jianzhou Wang & Shiqiang Jin & Shanshan Qin & Haiyan Jiang, 2014. "Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-17, September.
  • Handle: RePEc:hin:jnlmpe:712417
    DOI: 10.1155/2014/712417
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/712417.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/712417.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/712417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:712417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.