IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/712028.html
   My bibliography  Save this article

A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT

Author

Listed:
  • Yu Liu
  • Yang Yang
  • Xiaopeng Lv
  • Lifeng Wang

Abstract

Many applications based on Internet of Things (IoT) technology have recently founded in industry monitoring area. Thousands of sensors with different types work together in an industry monitoring system. Sensors at different locations can generate streaming data, which can be analyzed in the data center. In this paper, we propose a framework for online sensor fault detection. We motivate our technique in the context of the problem of the data value fault detection and event detection. We use the Statistics Sliding Windows (SSW) to contain the recent sensor data and regress each window by Gaussian distribution. The regression result can be used to detect the data value fault. Devices on a production line may work in different workloads and the associate sensors will have different status. We divide the sensors into several status groups according to different part of production flow chat. In this way, the status of a sensor is associated with others in the same group. We fit the values in the Status Transform Window (STW) to get the slope and generate a group trend vector. By comparing the current trend vector with history ones, we can detect a rational or irrational event. In order to determine parameters for each status group we build a self-learning worker thread in our framework which can edit the corresponding parameter according to the user feedback. Group-based fault detection (GbFD) algorithm is proposed in this paper. We test the framework with a simulation dataset extracted from real data of an oil field. Test result shows that GbFD detects 95% sensor fault successfully.

Suggested Citation

  • Yu Liu & Yang Yang & Xiaopeng Lv & Lifeng Wang, 2013. "A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, October.
  • Handle: RePEc:hin:jnlmpe:712028
    DOI: 10.1155/2013/712028
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/712028.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/712028.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/712028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:712028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.