IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/707953.html
   My bibliography  Save this article

Quality-Related Process Monitoring Based on Total Kernel PLS Model and Its Industrial Application

Author

Listed:
  • Kaixiang Peng
  • Kai Zhang
  • Gang Li

Abstract

Projection to latent structures (PLS) model has been widely used in quality-related process monitoring, as it can establish a mapping relationship between process variables and quality index variables. To enhance the adaptivity of PLS, kernel PLS (KPLS) as an advanced version has been proposed for nonlinear processes. In this paper, we discuss a new total kernel PLS (T-KPLS) for nonlinear quality-related process monitoring. The new model divides the input spaces into four parts instead of two parts in KPLS, where an individual subspace is responsible in predicting quality output, and two parts are utilized for monitoring the quality-related variations. In addition, fault detection policy is developed based on the T-KPLS model, which is more well suited for nonlinear quality-related process monitoring. In the case study, a nonlinear numerical case, the typical Tennessee Eastman Process (TEP) and a real industrial hot strip mill process (HSMP) are employed to access the utility of the present scheme.

Suggested Citation

  • Kaixiang Peng & Kai Zhang & Gang Li, 2013. "Quality-Related Process Monitoring Based on Total Kernel PLS Model and Its Industrial Application," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-14, December.
  • Handle: RePEc:hin:jnlmpe:707953
    DOI: 10.1155/2013/707953
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/707953.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/707953.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/707953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:707953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.