IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7057612.html
   My bibliography  Save this article

Modern Machine Learning Techniques for Univariate Tunnel Settlement Forecasting: A Comparative Study

Author

Listed:
  • Min Hu
  • Wei Li
  • Ke Yan
  • Zhiwei Ji
  • Haigen Hu

Abstract

Tunnel settlement commonly occurs during the tunnel construction processes in large cities. Existing forecasting methods for tunnel settlements include model-based approaches and artificial intelligence (AI) enhanced approaches. Compared with traditional forecasting methods, artificial neural networks can be easily implemented, with high performance efficiency and forecasting accuracy. In this study, an extended machine learning framework is proposed combining particle swarm optimization (PSO) with support vector regression (SVR), back-propagation neural network (BPNN), and extreme learning machine (ELM) to forecast the surface settlement for tunnel construction in two large cities of China P.R. Based on real-world data verification, the PSO-SVR method shows the highest forecasting accuracy among the three proposed forecasting algorithms.

Suggested Citation

  • Min Hu & Wei Li & Ke Yan & Zhiwei Ji & Haigen Hu, 2019. "Modern Machine Learning Techniques for Univariate Tunnel Settlement Forecasting: A Comparative Study," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:7057612
    DOI: 10.1155/2019/7057612
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7057612.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7057612.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7057612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Pengfei & Zhang, Limao & Zhu, Qizhi & Wu, Maozhi, 2023. "Probabilistic reliability assessment of twin tunnels considering fluid–solid coupling with physics-guided machine learning," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Lin, Penghui & Zhang, Limao & Tiong, Robert L.K., 2023. "Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7057612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.