IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6989785.html
   My bibliography  Save this article

A Two-Level Integrated Scheduling Strategy for Vehicle-Network Synergy considering New Energy Consumption

Author

Listed:
  • Yifei Gao
  • Xuefeng Shao

Abstract

With the substantial increase in the number of electric vehicles, the charging of electric vehicles without regulation and scale control will bring about problems, such as overloading of distribution transformers; the proportion of new energy power generation is also increasing year by year, and the access of new energy to the power grid will cause volatility. In order to solve the problems above, this paper proposed a coordinated and orderly scheduling strategy considering new energy consumption, which protects the interests of both users and the integrated power grid. First, a two-level vehicle-network interaction model considering both supply and demand sides was established. The upper-level model optimized the indicators on the distribution grid side, and a term of charge-discharge margin as well as grid-side load variance model was proposed. The lower-level optimization model was set based on the users’ condition. The average discharge rate index was defined to evaluate the battery loss satisfaction in the scheduling strategy, which fully considered users’ charging and discharging cost, and finally achieved a win-win situation between the power grid and the user. Secondly, the fast nondominated sorting genetic algorithm (NSGA-II) was used to figure out the effect of the strategy proposed in this paper, and a community is taken as an example for simulation. The results confirmed the economy and rationality of the above strategy, by rationally scheduling the charging and discharging behavior of electric vehicles, consuming new energy, restraining the fluctuation of the remaining new energy power generation, realizing the dynamic balance between the charging and discharging load and the output of new energy in a certain area, and finally effectively suppressing the fluctuation of the power grid load while improving the availability of clean energy.

Suggested Citation

  • Yifei Gao & Xuefeng Shao, 2022. "A Two-Level Integrated Scheduling Strategy for Vehicle-Network Synergy considering New Energy Consumption," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, May.
  • Handle: RePEc:hin:jnlmpe:6989785
    DOI: 10.1155/2022/6989785
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6989785.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6989785.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6989785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6989785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.